Лапласа уравнение - definition. What is Лапласа уравнение
Diclib.com
قاموس ChatGPT
أدخل كلمة أو عبارة بأي لغة 👆
اللغة:

ترجمة وتحليل الكلمات عن طريق الذكاء الاصطناعي ChatGPT

في هذه الصفحة يمكنك الحصول على تحليل مفصل لكلمة أو عبارة باستخدام أفضل تقنيات الذكاء الاصطناعي المتوفرة اليوم:

  • كيف يتم استخدام الكلمة في اللغة
  • تردد الكلمة
  • ما إذا كانت الكلمة تستخدم في كثير من الأحيان في اللغة المنطوقة أو المكتوبة
  • خيارات الترجمة إلى الروسية أو الإسبانية، على التوالي
  • أمثلة على استخدام الكلمة (عدة عبارات مع الترجمة)
  • أصل الكلمة

%ما هو (من)٪ 1 - تعريف

ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ ВТОРОГО ПОРЯДКА
Лапласа уравнение

Лапласа уравнение         

дифференциальное уравнение с частными производными

где х, у, z - независимые переменные, а u = u(x, y, z) - искомая функция. Это уравнение названо по имени П. Лапласа, рассмотревшего его в работах по теории тяготения (1782). К Л. у. приводит ряд задач физики и техники. Л. у. удовлетворяют температура при стационарных процессах, потенциал электростатического поля в точках пространства, свободных от зарядов, потенциал поля тяготения в области, не содержащей притягивающих масс, и т. п. Функции, удовлетворяющие Л. у., называются гармоническими функциями (См. Гармонические функции). О постановке задач для Л. у. см. в ст. Краевые задачи.

Уравнение Лапласа         
Уравнение Лапласа — дифференциальное уравнение в частных производных. В трёхмерном пространстве уравнение Лапласа записывается так:
ЛАПЛАСА УРАВНЕНИЕ         
дифференциальное уравнение с частными производными 2-го порядкагде, x, y, z - независимые переменные, ?(x, y, z) - искомая функция. Рассмотрено П. Лапласом (1782). К уравнению Лапласа приводят многие задачи математической физики (напр., распределение температур в стационарном процессе).

ويكيبيديا

Уравнение Лапласа

Уравнение Лапласа — дифференциальное уравнение в частных производных. В трёхмерном пространстве уравнение Лапласа записывается так:

2 u x 2 + 2 u y 2 + 2 u z 2 = 0 {\displaystyle {\frac {\partial ^{2}u}{\partial x^{2}}}+{\frac {\partial ^{2}u}{\partial y^{2}}}+{\frac {\partial ^{2}u}{\partial z^{2}}}=0}

и является частным случаем уравнения Гельмгольца.

Уравнение рассматривают также в двумерном и одномерном пространстве. В двумерном пространстве уравнение Лапласа записывается:

2 u x 2 + 2 u y 2 = 0 {\displaystyle {\frac {\partial ^{2}u}{\partial x^{2}}}+{\frac {\partial ^{2}u}{\partial y^{2}}}=0}

Также и в n-мерном пространстве. В этом случае нулю приравнивается сумма n вторых производных.

С помощью дифференциального оператора

Δ = 2 x 2 + 2 y 2 + 2 z 2 + . . . {\displaystyle \Delta ={\frac {\partial ^{2}}{\partial x^{2}}}+{\frac {\partial ^{2}}{\partial y^{2}}}+{\frac {\partial ^{2}}{\partial z^{2}}}+...}

— (оператора Лапласа) — это уравнение записывается (для любой размерности) одинаково как Δ u = 0 {\displaystyle \Delta u=0}

В этом случае размерность пространства указывается явно (или подразумевается).

Уравнение Лапласа относится к эллиптическому виду. Функции, являющиеся решениями уравнения Лапласа, называются гармоническими функциями. Неоднородное уравнение Лапласа называется уравнением Пуассона.

  • Замечание: всё сказанное выше относится к декартовым координатам в плоском пространстве (какова бы ни была его размерность). При использовании других координат представление оператора Лапласа меняется, и, соответственно, меняется запись уравнения Лапласа (пример — см. ниже). Эти уравнения также называются уравнением Лапласа, однако для устранения неоднозначности терминологии при этом обычно явно добавляется указание системы координат (и, при желании полной ясности, размерности), например: "двумерное уравнение Лапласа в полярных координатах".